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Who am I?

Thomas Leeper

Associate Professor in Political Behaviour at London
School of Economics

2013–15: Aarhus University (Denmark)
2008–12: PhD from Northwestern University
(Chicago, USA)
Birth–2008: Minnesota, USA

Interested in public opinion and political psychology

Email: t.leeper@lse.ac.uk

mailto:t.leeper@lse.ac.uk
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Who are you?

Introduce yourself to a neighbour

Where are you from?

What do you hope to learn from the course?
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Quick Survey

1 How many of you have worked with survey
data before?

2 Of those, how many of you have performed a
survey before?

3 How many of you have worked with
experimental data before?

4 Of those, how many of you have performed an
experiment before?
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Course Materials

All material for the course is available at:

http://www.thomasleeper.com/
surveyexpcourse/

http://www.thomasleeper.com/surveyexpcourse/
http://www.thomasleeper.com/surveyexpcourse/
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Learning Outcomes

By the end of the week, you should be able to. . .

1 Explain how to analyze experiments quantitatively.

2 Explain how to design experiments that speak to
relevant research questions and theories.

3 Evaluate the uses and limitations of several common
survey experimental paradigms.

4 Identify practical issues that arise in the implementation
of experiments and evaluate how to anticipate and
respond to them.
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Schedule of Four Sessions

1 Survey Experiments in Context
2 Examples and Paradigms
3 Hands-on Session
4 Practical Issues
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Questions?
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Experiments: History I

Oxford English Dictionary defines “experiment” as:
1 A scientific procedure undertaken to make a
discovery, test a hypothesis, or demonstrate a
known fact

2 A course of action tentatively adopted without
being sure of the outcome
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Experiments: History II
“Experiments” have a very long history

Major advances in design and analysis of
experiments based on agricultural and later
biostatistical research in the 19th century
(Fisher, Neyman, Pearson, etc.)

Multiple origins in the social sciences
First randomized experiment by Peirce and Jastrow
(1884)
Gosnell (1924)
LaLonde (1986)
Gerber and Green (2000)
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Experiments: History III

Rise of surveys in the behavioral revolution
Survey research not heavily experimental because
interviewing was mostly paper-based
“Split ballots” (e.g., Schuman & Presser; Bishop)

1983: Merrill Shanks and the Berkeley Survey Research
Center develop CATI

Mid-1980s: Paul Sniderman & Tom Piazza performed
the first modern survey experiment1

Then: the “first multi-investigator”
Later: Skip Lupia and Diana Mutz created TESS

1Sniderman, Paul M., and Thomas Piazza. 1993. The Scar of Race. Cambridge, MA: Harvard University Press.
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TESS
Time-Sharing Experiments for the Social Sciences

Multi-disciplinary initiative that provides infrastructure
for survey experiments on nationally representative
samples of the United States population

Great resource for survey experimental materials,
designs, and data

Funded by the U.S. National Science Foundation

Anyone anywhere in the world can apply

See also: LISS, Bergen’s Citizen Panel, Gothenburg’s
Citizen Panel

https://www.lissdata.nl/lissdata/
http://www.uib.no/en/citizen
http://lore.gu.se/surveys/citizen
http://lore.gu.se/surveys/citizen
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The First Survey Experiment

Hadley Cantril (1940) asks 3000 Americans either:

Do you think the U.S.
should do more than it is
now doing to help
England and France?

Yes: 13%
No

Do you think the U.S.
should do more than it is
now doing to help
England and France in
their fight against Hitler?

Yes: 22%
No

The “Hitler effect” was 22% - 13% = 9%
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Definitions I
A randomized experiment is:

The observation of units after, and possibly before,
a randomly assigned intervention in a controlled set-
ting, which tests one or more precise causal expec-
tations

If we manipulate the thing we want to know
the effect of (X ), and control (i.e., hold
constant) everything we do not want to know
the effect of (Z ), the only thing that can affect
the outcome (Y ) is X .
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Definitions II

A survey experiment is just an experiment that occurs in
a survey context

As opposed to in the field or in a laboratory

Can be in any mode (face-to-face, CATI, IVR, CASI,
etc.)

May or may not involve a representative population
Mutz (2011): “population-based survey
experiments”
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Definitions II
Unit: A physical object at a particular point in time
Treatment: An intervention, whose effect(s) we
wish to assess relative to some other
(non-)intervention

Synonyms: manipulation, intervention, factor,
condition, cell
Outcome: The variable we are trying to explain
Potential outcomes: The outcome value for each
unit that we would observe if that unit received
each treatment

Multiple potential outcomes for each unit, but we
only observe one of them
Causal effect: The comparisons between the
unit-level potential outcomes under each
intervention

This is what we want to know!
Average causal effect: Difference in mean
outcomes between treatment groups

This is almost what we want to know!
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Example
Unit: Americans in 1940
Outcome: Support for military intervention
Treatment: Mentioning Hitler versus not
Potential outcomes:

1 Support in “Hitler” condition
2 Support in control condition

Causal effect: Difference in support between the
two question wordings for each respondent

Individual treatment effect not observable!
Average effect (ATE) is the mean-difference
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Questions?



Introductions Course Outline History/Logic

Why are experiments useful?

Causal inference!
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Addressing Confounding

In observational research. . .
1 Correlate a “putative” cause (X ) and an
outcome (Y ), where X temporally precedes Y

2 Identify all possible confounds (Z)
3 “Condition” on all confounds

Calculate correlation between X and Y at each
combination of levels of Z

4 Basically: Y = β0 + β1X + β2−kZ + ε
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Salience of
Hitler

Support for
Military

Intervention

Media
Coverage Demographics

IdeologyPolitical
Sophistication
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Experiments are different

1 Causal inferences from design not analysis
2 Solves both temporal ordering and confounding

Treatment (X ) applied by researcher before
outcome (Y )
Randomization eliminates confounding (Z)
We don’t need to “control” for anything

3 Basically: Y = β0 + β1X + ε

4 Thus experiments are a “gold standard”
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Mill’s Method of Difference

If an instance in which the phenomenon under investigation
occurs, and an instance in which it does not occur, have
every circumstance save one in common, that one
occurring only in the former; the circumstance in which
alone the two instances differ, is the effect, or cause, or
an necessary part of the cause, of the phenomenon.
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Questions?
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Neyman-Rubin Potential
Outcomes Framework

If we are interested in some outcome Y , then for
every unit i , there are numerous “potential
outcomes” Y ∗ only one of which is visible in a given
reality. Comparisons of (partially unobservable)
potential outcomes indicate causality.
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Neyman-Rubin Potential
Outcomes Framework

Concisely, we typically discuss two potential
outcomes:

Y0i , the potential outcome realized if Xi = 0 (b/c
Di = 0, assigned to control)
Y1i , the potential outcome realized if Xi = 1 (b/c
Di = 1, assigned to treatment)
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Experimental Inference I

Each unit has multiple potential outcomes, but we only
observe one of them, randomly

In this sense, we are sampling potential outcomes from
each unit’s population of potential outcomes

unit low high control etc.

1 ? ? ? . . .
2 ? ? ? . . .
3 ? ? ? . . .
4 ? ? ? . . .
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Experimental Inference II

We cannot see individual-level causal effects

We can see average causal effects
Ex.: Average difference in military support among
those thinking of Hitler versus not

We want to know: TEi = Y1i − Y0i
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Experimental Inference III

We want to know: TEi = Y1i − Y0i for every i in the
population

We can average:
E [TEi ] = E [Y1i − Y0i ] = E [Y1i ]− E [Y0i ]

But we still only see one potential outcome for each unit:

ATEnaive = E [Y1i |X = 1]− E [Y0i |X = 0]

Is this what we want to know?
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Experimental Inference IV

What we want and what we have:

ATE = E [Y1i ]− E [Y0i ] (1)

ATEnaive = E [Y1i |X = 1]− E [Y0i |X = 0] (2)

Are the following statements true?
E [Y1i ] = E [Y1i |X = 1]
E [Y0i ] = E [Y0i |X = 0]

Not in general!
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Experimental Inference V
Only true when both of the following hold:

E [Y1i ] = E [Y1i |X = 1] = E [Y1i |X = 0] (3)
E [Y0i ] = E [Y0i |X = 1] = E [Y0i |X = 0] (4)

In that case, potential outcomes are independent of
treatment assignment

If true (e.g., due to randomization of X ), then:

ATEnaive = E [Y1i |X = 1]− E [Y0i |X = 0] (5)
= E [Y1i ]− E [Y0i ]
= ATE
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Experimental Inference VI

This holds in experiments because of a physical
process of randomization2

Units differ only in side of coin that was up
Xi = 1 only because Di = 1

Implications:
Covariate balance
Potential outcomes balanced and independent of
treatment assignment
No confounding (selection bias)

2Random means “known probability of treatment” not “haphazard”.
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Salience of
Hitler

Support for
Military

Intervention

Media
Coverage Demographics

IdeologyPolitical
Sophistication

Randomly
Assigned
Prime
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Questions?
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Experimental Analysis I

The statistic of interest in an experiment is the sample
average treatment effect (SATE)

If our sample is representative, then this provides an
estimate of the population average treatment (PATE)

Design-based random sampling
Model-based re-weighting

This boils down to being a mean-difference between two
groups:

SATE = 1
n1
∑

Y1i −
1
n0
∑

Y0i (5)
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Tidy Experimental Data

An experimental data structure looks like:

unit treatment outcome
1 0 13
2 0 6
3 0 4
4 0 5
5 1 3
6 1 1
7 1 10
8 1 9
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Tidy Experimental Data

Sometimes it looks like this instead, which is bad:

unit treatment outcome0 outcome1
1 0 13 NA
2 0 6 NA
3 0 4 NA
4 0 5 NA
5 1 NA 3
6 1 NA 1
7 1 NA 10
8 1 NA 9
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Tidy Experimental Data

An experimental data structure looks like:

unit treatment outcome
1 0 13
2 0 6
3 0 4
4 0 5
5 1 3
6 1 1
7 1 10
8 1 9
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Computation of Effects I

In practice we often estimate SATE using
t-tests, ANOVA, or OLS regression
These are all basically equivalent
Reasons to choose one procedure over another:

Disciplinary norms
Ease of interpretation
Flexibility for >2 treatment conditions
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Computation of Effects II

R:

t.test(outcome ~ treatment, data = data)
lm(outcome ~ factor(treatment), data = data)

Stata:

ttest outcome, by(treatment)
reg outcome i.treatment
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Questions?
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Experimental Analysis II

We don’t just care about the size of the SATE. We also
want to know whether it is significantly different from
zero (i.e., different from no effect/difference)

Thus we need to estimate the variance of the SATE

The variance is influenced by:
Total sample size
Element variance of the outcome, Y
Relative size of each treatment group
(Some other factors)
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Experimental Analysis III

Formula for the variance of the SATE is:
V̂ar(SATE ) = V̂ar(Y0)

n0
+ V̂ar(Y1)

n1

V̂ar(Y0) is control group variance
V̂ar(Y1) is treatment group variance

We often express this as the standard error of the
estimate:
ŜE SATE =

√
V̂ar(Y0)

n0 + V̂ar(Y1)
n1
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Intuition about Variance

Bigger sample → smaller SEs

Smaller variance → smaller SEs

Efficient use of sample size:
When treatment group variances equal, equal
sample sizes are most efficient
When variances differ, sample units are better
allocated to the group with higher variance in Y
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Statistical Power
Power analysis is used to determine sample size
before conducting an experiment
Type I and Type II Errors

H0 False H0 True
(|ATE | > 0) (ATE = 0)

Reject H0 True positive Type I Error
Accept H0 Type II Error True zero

True positive rate (1− κ) is power
False positive rate is the significance threshold (α)
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Doing a Power Analysis

µ, Treatment group mean outcomes
N , Sample size
σ, Outcome variance
α Statistical significance threshold
φ, a sampling distribution

Power = φ
(
|µ1−µ0|

√
N

2σ − φ−1
(
1− α

2
))
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Intuition about Power

Minimum detectable effect is the smallest effect we
could detect given sample size, “true” ATE,
variance of outcome measure, power (1− κ), and α.

In essence: some non-zero effect sizes are not
detectable by a study of a given sample size.

In underpowered study, we will be unlikely to detect
true small effects. And most effects are small! 3

3Gelman, A. and Weakliem, D. 2009. “Of Beauty, Sex and Power.” American Scientist 97(4): 310–16
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Intuition about Power
It can help to think in terms of “standardized
effect sizes”

Intuition: How large is the effect in standard
deviations of the outcome?

Know if effects are large or small
Compare effects across studies

Cohen’s d :
d = x̄1−x̄0

s , where s =
√

(n1−1)s21+(n0−1)s20
n1+n0−2

Small: 0.2; Medium: 0.5; Large: 0.8
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Intuition about Power
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Power analysis in R

power.t.test(
# sample size (leave blank!)
n = ,

# minimum detectable effect size
delta = 0.4, sd = 1,

# alpha and power (1-kappa)
sig.level = 0.05, power = 0.8,

# two-tailed vs. one-tailed test
alternative = "two.sided"

)
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Power analysis in Stata

power twomeans 0, diff(0.2)

// for multiple values of
forvalues i = 0.1 (0.1) 1.0 {

power twomeans 0, diff(‘i’)
}

// using raw effect sizes and standard deviations
power twomeans 0 0.5, sd1(.5) sd2(.7)

// adjusting alpha or power
power twomeans 0, diff(0.2) alpha(0.10) power(0.7)
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Increasing/Decreasing Power

Increases Power
Bigger sample

Precise measures

Covariates?

Decreases Power
Attrition

Noncompliance

Clustering
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Factorial Designs
The two-condition experiment is a stylized ideal

An experiment can have any number of
conditions

Up to the limits of sample size
More than 8–10 conditions is typically unwieldy

Three “flavors”:
Multiple conditions in a single factor
Multiple fully crossed factors
Partially crossed (“fractional factorial”) designs

Regression methods provide a generalizable
tool for causal inference in such designs
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Policy
Beneficiaries

Policy
Opinion

Ideology

Etc.Identity
Salience

Treatment 1

Treatment 2



Introductions Course Outline History/Logic

Example4

How close do you feel to your ethnic or racial
group?How close do you feel to other
Americans?

Some people have said that taxes need to be
raised to take care of pressing national needs.
How willing would you be to have your taxes
raised to improve education in public
schools?Some people have said that taxes need
to be raised to take care of pressing national
needs. How willing would you be to have your
taxes raised to improve educational
opportunities for minorities?

4Transue. 2007. “Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National
Identity as a Uniting Force.” American Journal of Political Science 51(1): 78–91.
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2x2 Factorial Design

Condition
Educ. for Minorities Y1
Schools Y0

Condition Americans Own Race
Educ. for Minorities Y1,0 Y1,1
Schools Y0,0 Y0,1
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Two ways to parameterize this

Dummy variable regression (i.e., treatment–control
CATEs):
Y = β0 + β1X0,1 + β2X1,0 + β3X1,1 + ε

Interaction effects (i.e., treatment–treatment
CATEs):
Y = β0 + β1X11 + β2X21 + β3X11 ∗ X21 + ε

Use margins to extract marginal effects
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Considerations

Factorial designs can quickly become unwieldy
and expensive
Need to consider what CATEs are of
theoretical interest

Treatment–control, pairwise
Treatment–treatment, pairwise
Marginal effects, averaging across other factors
Comparison of merged conditions
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Probably obvious, but. . .

Factors Conditions per factor Total Conditions n

1 2 2 400
1 3 3 600
1 4 4 800
2 2 4 800
2 3 6 1200
2 4 8 1600
3 3 9 1800
3 4 12 2400
4 4 16 3200

Assumes power to detect a relatively small effect, but no consideration of
multiple comparisons.
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Considerations

Factorial designs can quickly become unwieldy
and expensive
Need to consider what CATEs are of
theoretical interest

Treatment–control, pairwise
Treatment–treatment, pairwise
Marginal effects, averaging across other factors
Comparison of merged conditions
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Questions?
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